rbernoulli(n, p = 0.5)

## Arguments

n |
Integer vector. Size of the graph. If `length(n) > 1` , then it will
a list of random graphs. |

p |
Probability of a tie. This may be either a scalar, or a vector of the
same length of `n` . |

## Value

If `n`

is a single number, a square matrix of size `n`

with zeros in
the diagonal. Otherwise it returns a list of `length(n)`

square matrices of
sizes equal to those specified in `n`

.

## Examples

# A graph of size 4
rbernoulli(4)

#> [,1] [,2] [,3] [,4]
#> [1,] 0 1 1 0
#> [2,] 0 0 1 1
#> [3,] 0 0 0 0
#> [4,] 0 1 1 0

#> [[1]]
#> [,1] [,2] [,3]
#> [1,] 0 0 0
#> [2,] 1 0 0
#> [3,] 0 1 0
#>
#> [[2]]
#> [,1] [,2] [,3] [,4]
#> [1,] 0 1 0 0
#> [2,] 1 0 1 1
#> [3,] 0 1 0 0
#> [4,] 1 1 1 0
#>
#> [[3]]
#> [,1] [,2]
#> [1,] 0 1
#> [2,] 1 0
#>

#> [[1]]
#> [,1] [,2] [,3]
#> [1,] 0 0 0
#> [2,] 0 0 0
#> [3,] 0 0 0
#>
#> [[2]]
#> [,1] [,2] [,3] [,4]
#> [1,] 0 0 0 0
#> [2,] 0 0 0 0
#> [3,] 1 0 0 0
#> [4,] 1 0 0 0
#>
#> [[3]]
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 0 1 0 0 0 1
#> [2,] 0 0 1 0 1 0
#> [3,] 0 0 0 0 1 1
#> [4,] 0 0 0 0 0 0
#> [5,] 1 0 0 0 0 0
#> [6,] 0 0 0 1 0 0
#>